Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

KELLY Laura J. RENNY-BYFIELD Simon PELLICER Jaume MACAS Jiří NOVÁK Petr NEUMANN Pavel LYSÁK Martin DAY Peter D. BERGER Madeleine FAY Michael F. NICHOLS Richard A. LEITCH Andrew R. LEITCH Ilia J.

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj New Phytologist
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://onlinelibrary.wiley.com/doi/10.1111/nph.13471/epdf
Doi http://dx.doi.org/10.1111/nph.13471
Obor Botanika
Klíčová slova DNA deletion; Fritillaria; genome size evolution; genome turnover; Liliaceae; repetitive DNA; transposable elements (TEs)
Přiložené soubory
Popis Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.