Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques.

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

MRAZEK Vojtech SEKANINA Lukas DOBAI Roland SÝS Marek ŠVENDA Petr

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1109/TVLSI.2019.2923848
Doi http://dx.doi.org/10.1109/TVLSI.2019.2923848
Klíčová slova Testing; Cryptography; Field programmable gate arrays; Hardware; System-on-chip; Generators; Machine learning
Popis Randomness testing is an important procedure that bit streams, produced by critical cryptographic primitives such as encryption functions and hash functions, have to undergo. In this paper, a new hardware platform for the randomness testing is proposed. The platform exploits the principles of genetic programming, which is a machine learning technique developed for the automated program and circuit design. The platform is capable of evolving efficient randomness distinguishers directly on a chip. Each distinguisher is represented as a Boolean polynomial in the algebraic normal form. The randomness testing is conducted for bit streams that are either stored in an on-chip memory or generated by a circuit placed on the chip. The platform is developed with a Xilinx Zynq-7000 All Programmable System on Chip that integrates a field programmable gate array with on-chip ARM processors. The platform is evaluated in terms of the quality of randomness testing, performance, and resources utilization. With power budget less than 3 W, the platform provides comparable randomness testing capabilities with the standard testing batteries running on a personal computer.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.