On Eliminating Inductive Biases of Deep Language Models
Autoři | |
---|---|
Rok publikování | 2021 |
Druh | Další prezentace na konferencích |
Fakulta / Pracoviště MU | |
Citace | |
Popis | This poster outlines problems of modern neural language models with out-of-domain performance. It suggests that this might be a consequence of narrow model specialization. In order to eliminate this flaw, it suggests two main directions of future work: 1. Introduction of evaluative metrics can identify out-of-domain generalization abilities, while 2. Objective approach adjusts the training objective to respect the desired generalization properties of the system. |
Související projekty: |