Interpreting support vector machines applied in laser-induced breakdown spectroscopy

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KEPES Erik VRABEL Jakub ADAMOVSKÝ Ondřej STRITEZSKA Sara MODLITBOVA Pavlina PORIZKA Pavel KAISER Jozef

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Analytica Chimica Acta
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://www.sciencedirect.com/science/article/pii/S0003267021011788?via%3Dihub
Doi http://dx.doi.org/10.1016/j.aca.2021.339352
Klíčová slova LIBS; Classification; Feature importance; SVM; Interpretable machine learning
Popis Laser-induced breakdown spectroscopy is often combined with a multivariate black box model-such as support vector machines (SVMs)-to obtain desirable quantitative or qualitative results. This approach carries obvious risks when practiced in high-stakes applications. Moreover, the lack of understanding of a black-box model limits the user's ability to fine-tune the model. Thus, here we present four approaches to interpret SVMs through investigating which features the models consider important in the classification task of 19 algal and cyanobacterial species. The four feature importance metrics are compared with popular approaches to feature selection for optimal SVM performance. We report that the distinct feature importance metrics yield complementary and often comparable information. In addition, we identify our SVM model's bias towards features with a large variance, even though these features exhibit a significant overlap between classes. We also show that the linear and radial basis kernel SVMs weight the same features to the same degree.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.