A complete normal form for everywhere Levi-degenerate hypersurfaces in C-3

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KOLÁŘ Martin KOSSOVSKIY Ilja

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Advances in Mathematics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www
Doi http://dx.doi.org/10.1016/j.aim.2022.108590
Klíčová slova CR-manifolds; Normal forms; Automorphism group; Holomorphic mappings
Popis 2-nondegenerate real hypersurfaces in complex manifolds play an important role in CR-geometry and the theory of Hermitian Symmetric Domains. In this paper, we obtain a complete convergent normal form for everywhere 2-nondegenerate real-analytic hypersurfaces in complex 3-space. We do so by entirely reproducing the Chern-Moser theory in the 2-nondegenerate setting. This seems to be the first such construction for hypersurfaces of infinite Catlin multitype. We in particular discover chains in an everywhere 2-nondegenerate hypersurface, the tangent lines to which at a point form the so-called canonical cone. Our approach is based on using a rational (nonpolynomial) model for everywhere 2-nondegenerate hypersurfaces, which is the local realization due to Fels-Kaup of the well known tube over the light cone. For the convergence of the normal form, we use an argument due to Zaitsev, based on building a canonical direction field in an appropriate bundle over a hypersurface. As an application, we obtain, in the spirit of Chern-Moser theory, a criterion for the local sphericity (i.e. local equivalence to the model) for a 2-nondegenerate hypersurface in terms of its normal form. As another application, we obtain an explicit description of the moduli space of everywhere 2-nondegenerate hypersurfaces.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.