Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ERGIR Ece OLIVER-DE la Cruz Jorge FERNANDES Soraia CASSANI Marco NIRO Francesco PEREIRA DE SOUSA Daniel VRBSKY Jan VINARSKY Vladimir PERESTRELO Ana Rubina DEBELLIS Doriana VADOVIČOVÁ Natália ULDRIJAN Stjepan CAVALIERI Francesca PAGLIARI Stefania REDL Heinz ERTL Peter FORTE Giancarlo

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Nature Scientific Reports
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://www.nature.com/articles/s41598-022-22225-w
Doi http://dx.doi.org/10.1038/s41598-022-22225-w
Klíčová slova 3D organotypic cardiac microtissues; iPSC
Popis Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.