Modified conformal extensions
Autoři | |
---|---|
Rok publikování | 2023 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Annals of Global Analysis and Geometry |
Fakulta / Pracoviště MU | |
Citace | |
www | https://link.springer.com/article/10.1007/s10455-023-09918-9 |
Doi | http://dx.doi.org/10.1007/s10455-023-09918-9 |
Klíčová slova | Differential geometry; Patterson-Walker metric; Projective structure; Conformal structure; Conformal Killing field; Einstein metric; Fefferman-Graham ambient metrics |
Popis | We present a geometric construction and characterization of 2n-dimensional split-signature conformal structures endowed with a twistor spinor with integrable kernel. The construction is regarded as a modification of the conformal Patterson-Walker metric construction for n-dimensional projective manifolds. The characterization is presented in terms of the twistor spinor and an integrability condition on the conformal Weyl curvature. We further derive a complete description of Einstein metrics and infinitesimal conformal symmetries in terms of suitable projective data. Finally, we obtain an explicit geometrically constructed Fefferman-Graham ambient metric and show the vanishing of the Q-curvature. |
Související projekty: |