Canonical curves and Kropina metrics in Lagrangian contact geometry

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

MA Tianyu FLOOD Keegan Jonathan MATVEEV Vladimir S ŽÁDNÍK Vojtěch

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Nonlinearity
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://iopscience.iop.org/article/10.1088/1361-6544/ad0c2b
Doi http://dx.doi.org/10.1088/1361-6544/ad0c2b
Klíčová slova Fefferman-type construction; Lagrangian contact structure; chains; Kropina metric; pseudo-Finsler metric; null geodesics
Popis We present a Fefferman-type construction from Lagrangian contact to split-signature conformal structures and examine several related topics. In particular, we describe the canonical curves and their correspondence. We show that chains and null-chains of an integrable Lagrangian contact structure are the projections of null-geodesics of the Fefferman space. Employing the Fermat principle, we realize chains as geodesics of Kropina (pseudo-Finsler) metrics. Using recent rigidity results, we show that 'sufficiently many' chains determine the Lagrangian contact structure. Separately, we comment on Lagrangian contact structures induced by projective structures and the special case of dimension three.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.