Compactifications of indefinite 3-Sasaki structures and their quaternionic Kähler quotients

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

GOVER A. Rod NEUSSER Katharina WILLSE Travis

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Annali di Matematica Pura ed Applicata
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s10231-023-01385-0
Doi http://dx.doi.org/10.1007/s10231-023-01385-0
Klíčová slova Projective differential geometry; Einstein manifolds; Sasaki manifolds; Hyper-Kähler and quaternionic Kähler geometry; Holonomy; Geometric compactifications
Popis We show that 3-Sasaki structures admit a natural description in terms of projective differential geometry. First we establish that a 3-Sasaki structure may be understood as a projective structure whose tractor connection admits a holonomy reduction, satisfying a particular non-vanishing condition, to the (possibly indefinite) unitary quaternionic group Sp(p, q). Moreover, we show that, if a holonomy reduction to Sp(p, q) of the tractor connection of a projective structure does not satisfy this condition, then it decomposes the underlying manifold into a disjoint union of strata including open manifolds with (indefinite) 3-Sasaki structures and a closed separating hypersurface at infinity with respect to the 3-Sasaki metrics. It is shown that the latter hypersurface inherits a Biquard–Fefferman conformal structure, which thus (locally) fibers over a quaternionic contact structure, and which in turn compactifies the natural quaternionic Kähler quotients of the 3-Sasaki structures on the open manifolds. As an application, we describe the projective compactification of (suitably) complete, non-compact (indefinite) 3-Sasaki manifolds and recover Biquard’s notion of asymptotically hyperbolic quaternionic Kähler metrics.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.