Non-Commutative Batalin-Vilkovisky Algebras, Homotopy Lie Algebras and the Courant Bracket

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

BERING LARSEN Klaus

Rok publikování 2007
Druh Článek v odborném periodiku
Časopis / Zdroj Communications in Mathematical Physics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://www.arxiv.org/abs/hep-th/0603116
Doi http://dx.doi.org/10.1007/s00220-007-0278-3
Obor Teoretická fyzika
Klíčová slova Batalin-Vilkovisky Algebra; Homotopy Lie Algebra; Koszul Bracket; Derived Bracket; Courant Bracket.
Popis We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent \Delta operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie brackets with a fixed nilpotent Lie algebra element Q. We find the most general Jacobi-like identity that such a hierarchy satisfies. The numerical coefficients in front of each term in these generalized Jacobi identities are related to the Bernoulli numbers. We suggest that the definition of a homotopy Lie algebra should be enlarged to accommodate this important case. Finally, we consider the Courant bracket as an example of a derived bracket. We extend it to the "big bracket" of exterior forms and poly-vectors, and give closed formulas for the higher Courant brackets.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.