Odd Scalar Curvature in Anti-Poisson Geometry
Autoři | |
---|---|
Rok publikování | 2008 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Physics Letters B |
Fakulta / Pracoviště MU | |
Citace | |
www | http://arxiv.org/abs/0712.3699 |
Doi | http://dx.doi.org/10.1016/j.physletb.2008.03.066 |
Obor | Teoretická fyzika |
Klíčová slova | BV Field-Antifield Formalism; Odd Laplacian; Anti-Poisson Geometry;Semidensity; Connection; Odd Scalar Curvature. |
Popis | Recent works have revealed that the recipe for field-antifield quantization of Lagrangian gauge theories can be considerably relaxed when it comes to choosing a path integral measure \rho if a zero-order term \nu_{\rho} is added to the \Delta operator. The effects of this odd scalar term \nu_{\rho} become relevant at two-loop order. We prove that \nu_{\rho} is essentially the odd scalar curvature of an arbitrary torsion-free connection that is compatible with both the anti-Poisson structure E and the density \rho. This extends a previous result for non-degenerate antisymplectic manifolds to degenerate anti-Poisson manifolds that admit a compatible two-form. |
Související projekty: |