Differences in trait compositions between rocky natural and artificial habitats

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

LOSOSOVÁ Zdeňka LÁNÍKOVÁ Deana

Rok publikování 2010
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Vegetation Science
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Botanika
Klíčová slova BiolFlor; Czech Republic; Ellenberg indicator values; pCCA; Phylogeny; Regression tree model; Rock; Wall
Popis Question: What are the differences in trait compositions which enable native plants to colonise comparable natural and man-made habitats? Are these traits independent of phylogenetic relationships between species? Location: Czech Republic Methods: The relative importance of biological, ecological and distributional traits of native species was studied, using a dataset of 75 species growing in rock and wall habitats in the Czech Republic. Species preferences for individual habitats due to climatic conditions and proportions of different vegetation types in their surrounding were partialled out using partial canonical correspondence analysis. The pattern of plant traits along a gradient from natural rock habitats to secondary wall habitats was analysed using regression trees and generalized linear models with and without phylogenetical correction. Results: The most common native species colonising rock habitats are phanerophytes, mostly woody juveniles, with a CSR life strategy and most of them are adapted to epizoochory. Summer green leaves, annual life span, CR life strategy, reproduction mostly by seeds and dispersal by ants are all traits positively associated with the ability of species to colonise wall habitats. These species are also characterized by their high demand for nutrients, temperature, base-rich substrates, and light. Biological and ecological traits are more important for colonizing new habitats than traits related to species dispersal ability or phylogenetical relationships between species. Biological and ecological traits alone explained 29.3% of variability in the species dataset, while dispersal characteristics and phylogeny alone explained 9.1% and 4.8% respectively. Conclusions: We outline how the process of environmental filtering determines the native species assemblages and identify a set of species traits that enable them to persist in particular habitats. We conclude that although urbanisation generally results in loss of natural habitats, there are new, man-made habitats potentially suitable for native species.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.