Enhanced Ammonia Adsorption on Directly Deposited Nanofibrous Carbon Films

Warning

This publication doesn't include Faculty of Education. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

BANNOV Alexander JAŠEK Ondřej PRÁŠEK Jan BURŠÍK Jiří ZAJÍČKOVÁ Lenka

Year of publication 2018
Type Article in Periodical
Magazine / Source JOURNAL OF SENSORS
MU Faculty or unit

Central European Institute of Technology

Citation
Web web nakladatele
Doi http://dx.doi.org/10.1155/2018/7497619
Keywords carbon nanostructures; absorption; amonnia
Attached files
Description The ammonia adsorption on the nanostructured carbon thin film was significantly influenced by the choice of deposition temperature and deposition time of thin film synthesis. The thin films were prepared on Si/SiO2 substrates by chemical vapour deposition in Ar/C2H2 gas mixture using iron catalytic nanoparticles. The analysis of the grown layer by the scanning and transmission electron microscopy showed the transition from long multiwalled nanotubes (MWCNTs) to bamboo-like hollow carbon nanofiber structure with the decrease of the deposition temperature from 700 to 600 degrees C. Further, the material was analyzed by energy-dispersive X-ray spectroscopy and Raman spectroscopy confirmed the transition from graphitic sp(2) structure to highly defective structure at lower deposition temperature. The resistance of the prepared layer strongly depends on deposition temperature (T-d) and deposition time (t(d)). High resistance layer, 38.6 kOhm, was formed at T-d 600 degrees C and t(d) 10 min, while at T-d 700 degrees C and t(d) 60 min, the resistance decreased to 860 ohms. Such behaviour is consistent with MWCNTs being responsible for the formation of the conductive network. Such system was studied using chemiresistor ammonia gas sensor configuration. The sensor resistance increased when exposed to ammonia in all the cases, but their response varied considerably. A decrease in deposition time, from 60 to 10 min, and the deposition temperature, from 700 to 600 degrees C, led to the 10-fold increase in the sensor response. The measurements carried out at room temperature showed the higher sensor response than the measurements carried out at 200 degrees C. This behaviour can be explained by the change in adsorption-desorption equilibrium at different temperatures. Analysis of dependence of the sensor response on the ammonia concentration proved that the underlying resistance change mechanism is chemisorption of ammonia molecules on the carbon network corresponding to the Langmuir isotherm.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.