Visual Analysis of Ligand Trajectories in Molecular Dynamics

Investor logo

Warning

This publication doesn't include Faculty of Education. It includes Faculty of Informatics. Official publication website can be found on muni.cz.
Authors

JURČÍK Adam FURMANOVÁ Katarína BYŠKA Jan VONÁSEK Vojtěch VÁVRA Ondřej ULBRICH Pavol HAUSER Helwig KOZLÍKOVÁ Barbora

Year of publication 2019
Type Article in Proceedings
Conference IEEE Pacific Visualization Symposium 2019
MU Faculty or unit

Faculty of Informatics

Citation
Doi http://dx.doi.org/10.1109/PacificVis.2019.00032
Keywords trajectory;ligand;protein;molecular dynamics;visualization;visual analysis
Description In many cases, protein reactions with other small molecules (ligands) occur in a deeply buried active site. When studying these types of reactions, it is crucial for biochemists to examine trajectories of ligand motion. These trajectories are predicted with in-silico methods that produce large ensembles of possible trajectories. In this paper, we propose a novel approach to the interactive visual exploration and analysis of large sets of ligand trajectories, enabling the domain experts to understand protein function based on the trajectory properties. The proposed solution is composed of multiple linked 2D and 3D views, enabling the interactive exploration and filtering of trajectories in an informed way. In the workflow, we focus on the practical aspects of the interactive visual analysis specific to ligand trajectories. We adapt the small multiples principle to resolve an overly large number of trajectories into smaller chunks that are easier to analyze. We describe how drill-down techniques can be used to create and store selections of the trajectories with desired properties, enabling the comparison of multiple datasets. In appropriately designed 2D and 3D views, biochemists can either observe individual trajectories or choose to aggregate the information into a functional boxplot or density visualization. Our solution is based on a tight collaboration with the domain experts, aiming to address their needs as much as possible. The usefulness of our novel approach is demonstrated by two case studies, conducted by the collaborating protein engineers.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.