Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Forster resonance energy transfer

Warning

This publication doesn't include Faculty of Education. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

DATINSKÁ Vladimíra KLEPARNIK Karel BELSANOVA Barbora MINARIK Marek FORET Frantisek

Year of publication 2018
Type Article in Periodical
Magazine / Source Journal of Separation Science
MU Faculty or unit

Faculty of Science

Citation
Web Full Text
Doi http://dx.doi.org/10.1002/jssc.201800248
Keywords capillary electrophoresis; Forster resonance energy transfer; nucleic acids; quantum dots; sensors
Description The synthesis and determination of the structure of a Forster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Forster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.