Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

GARLÍKOVÁ Zuzana SILVA Ana Catarina RABATA Anas POTĚŠIL David IHNATOVÁ Ivana DUMKOVÁ Jana KOLEDOVÁ Zuzana ZDRÁHAL Zbyněk VINARSKÝ Vladimír HAMPL Aleš PINTO-DO-Ó Perpétua NASCIMENTO Diana Santos

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj TISSUE ENGINEERING PART C-METHODS
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www http://online.liebertpub.com/doi/abs/10.1089/ten.tec.2017.0283?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed
Doi http://dx.doi.org/10.1089/ten.tec.2017.0283
Klíčová slova decellularization; lung; extracellular matrix; in vitro models; lung fibroblasts; biological scaffold
Popis Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell–ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell–ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell–ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.