Towards Identification of Hypomimia in Parkinson's Disease Based on Face Recognition Methods

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

RAJNOHA M. MEKYSKA J. BURGET R. ELIÁŠOVÁ Ilona KOŠŤÁLOVÁ Milena REKTOROVÁ Irena

Rok publikování 2018
Druh Článek ve sborníku
Konference 2018 10TH INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS AND WORKSHOPS (ICUMT 2018): EMERGING TECHNOLOGIES FOR CONNECTED SOCIETY
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://ieeexplore.ieee.org/document/8631249
Klíčová slova Parkinson's disease; hypomimia; face recognition; machine learning
Popis Hypomimia manifested as an expressionless face with little or no sense of animation is a typical symptom of Parkinson's disease (PD). Although some researchers tried to quantify and diagnose the hypomimia based on the analysis of video-recordings, a study dealing with a possibility of its identification using the simple static face analysis is missing. The goal of this work is therefore to verify whether PD hypomimia can be detected even from static face images. For this purpose we enrolled 50 PD patients and 50 age-and gender-matched healthy controls. Parameterization based on face recognition methods in combination with conventional classifiers (random forests, XG-Boost, etc.) were used to automatically identify PD hypomimia. Among the classifiers, the decision tree algorithm achieved the best accuracy (67.33 %). The results suggest that automatic static face analysis can support PD hypomimia diagnosis, nevertheless is not accurate enough to outperform the approaches based on video-recordings processing.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.