Efficient Combination of Classifiers for 3D Action Recognition

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SEDMIDUBSKÝ Jan ZEZULA Pavel

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Multimedia Systems
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/article/10.1007/s00530-021-00767-9
Doi http://dx.doi.org/10.1007/s00530-021-00767-9
Klíčová slova action recognition;skeleton sequence;fusion;augmentation;normalization
Popis The popular task of 3D human action recognition is almost exclusively solved by training deep-learning classifiers. To achieve high recognition accuracy, input 3D actions are often pre-processed by various normalization or augmentation techniques. However, it is not computationally feasible to train a classifier for each possible variant of training data in order to select the best-performing combination of pre-processing techniques for a given dataset. In this paper, we propose an evaluation procedure that determines the best combination in a very efficient way. In particular, we only train one independent classifier for each available pre-processing technique and estimate the accuracy of a specific combination by efficient fusion of the corresponding classification results based on a strict majority vote rule. In addition, for the best-ranked combination, we can retrospectively apply the normalized/augmented variants of input data to train only a single classifier. This enables to decide whether it is generally better to train a single model, or rather a set of independent classifiers whose results are fused within the classification phase. We evaluate the experiments on single-subject as well as person-interaction datasets of 3D skeleton sequences and all combinations of up to 16 normalization and augmentation techniques, some of them also proposed in this paper.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.