Nonoscillation of half-linear dynamic equations on time scales

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

HASIL Petr KISEL'ÁK Jozef POSPÍŠIL Michal VESELÝ Michal

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Mathematical Methods in the Applied Sciences
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1002/mma.7304
Doi http://dx.doi.org/10.1002/mma.7304
Klíčová slova dynamic equation; half- linear equation; linear equation; oscillation; Riccati equation; time scale
Popis The research contained in this paper belongs to the qualitative theory of dynamic equations on time scales. Via the detailed analysis of solutions of the associated Riccati equation and an advanced averaging technique, we provide the description of domain of nonoscillation of very general equations. The results are formulated and proved for half-linear equations (i.e., equations connected to PDEs with one dimensional p-Laplacian) on time scales. Nevertheless, we obtain new results also for linear difference equations. Moreover, the combination of the presented results with previous ones shows that many useful equations are conditionally oscillatory. Such equations are ideal as testing and comparison equations in real-world models which are beyond capabilities of known oscillation and nonoscillation criteria often.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.