PSEUDO-RIEMANNIAN AND HESSIAN GEOMETRY RELATED TO MONGE-AMPERE STRUCTURES
Autoři | |
---|---|
Rok publikování | 2022 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Archivum Mathematicum |
Fakulta / Pracoviště MU | |
Citace | |
www | http://dx.doi.org/10.5817/AM2022-5-329 |
Doi | http://dx.doi.org/10.5817/AM2022-5-329 |
Klíčová slova | Hessian structure; Lychagin-Rubtsov metric; Monge-Ampere structure; Monge-Ampere equation; Plucker embedding |
Popis | We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampere structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures. |
Související projekty: |