Copper Phosphinate Complexes as Molecular Precursors for Ethanol Dehydrogenation Catalysts

Logo poskytovatele

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

POKORNÝ Tomáš DOROSHENKO Iaroslav MACHÁČ Petr ŠIMONÍKOVÁ Lucie BITTOVÁ Miroslava MORAVEC Zdeněk KARASKOVA Katerina ŠKODA David PINKAS Jiří STÝSKALÍK Aleš

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Inorganic Chemistry
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://pubs.acs.org/doi/full/10.1021/acs.inorgchem.3c01678
Doi http://dx.doi.org/10.1021/acs.inorgchem.3c01678
Klíčová slova CONTINUOUS SYMMETRY MEASURES; CRYSTAL-STRUCTURES; MAGNETIC-PROPERTIES
Popis Nowadays, the production of acetaldehyde heavily relies on the petroleum industry. Developing new catalysts for the ethanol dehydrogenation process that could sustainably substitute current acetaldehyde production methods is highly desired. Among the ethanol dehydrogenation catalysts, copper-based materials have been intensively studied. Unfortunately, the Cu-based catalysts suffer from sintering and coking, which lead to rapid deactivation with time-on-stream. Phosphorus doping has been demonstrated to diminish coking in methanol dehydrogenation, fluid catalytic cracking, and ethanol-to-olefin reactions. This work reports a pioneering application of the well-characterized copper phosphinate complexes as molecular precursors for copper-based ethanol dehydrogenation catalysts enriched with phosphate groups (Cu-phosphate/SiO2). Three new catalysts (CuP-1, CuP-2, and CuP-3), prepared by the deposition of complexes {Cu(SAAP)}(n) (1), [Cu-6(BSAAP)(6)] (2), and [Cu-3(NAAP)(3)] (3) on the surface of commercial SiO2, calcination at 500 degrees C, and reduction in the stream of the forming gas 5% H-2/N-2 at 400 degrees C, exhibited unusual properties. First, the catalysts showed a rapid increase in catalytic activity. After reaching the maximum conversion, the catalyst started to deactivate. The unusual behavior could be explained by the presence of the phosphate phase, which made Cu2+ reduction more difficult. The phosphorus content gradually decreased during time-on-stream, copper was reduced, and the activity increased. The deactivation of the catalyst could be related to the copper diffusion processes. The most active CuP-1 catalyst reaches a maximum of 73% ethanol conversion and over 98% acetaldehyde selectivity at 325 degrees C and WHSV = 2.37 h(-1).
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.