Geometry of universal embedding spaces for almost complex manifolds

Varování

Publikace nespadá pod Pedagogickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

CLEMENTE Gabriella Alexandrea

Rok publikování 2024
Druh Článek v odborném periodiku
Časopis / Zdroj Archivum Mathematicum
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://dml.cz/handle/10338.dmlcz/152026
Doi http://dx.doi.org/10.5817/AM2024-1-35
Klíčová slova almost-complex manifolds; complex structures; fiber bundles; integrability; Nijenhuis tensor; obstruction theory; transverse embeddings; vector bundles
Popis We investigate the geometry of universal embedding spaces for compact almost-complex manifolds of a given dimension, and related constructions that allow for an extrinsic study of the integrability of almost-complex structures. These embedding spaces were introduced by J-P. Demailly and H. Gaussier, and are complex algebraic analogues of twistor spaces. Their goal was to study a conjecture made by F. Bogomolov asserting the “transverse embeddability” of arbitrary compact complex manifolds into foliated algebraic varieties. In this work, we introduce a more general category of universal embedding spaces, and elucidate the geometric structure of related bundles, such as the integrability locus characterizing integrable almost-complex structures. Our approach could potentially lead to finding new obstructions to the existence of a complex structure, which may be useful for tackling Yau’s Challenge.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.