Friedrichs extension of operators defined by even order Sturm-Liouville equations on time scales
Autoři | |
---|---|
Rok publikování | 2012 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Applied Mathematics and Computation |
Fakulta / Pracoviště MU | |
Citace | |
Doi | http://dx.doi.org/10.1016/j.amc.2012.04.027 |
Obor | Obecná matematika |
Klíčová slova | Time scale; even order Sturm-Liouville dynamic equation; Friedrichs extension; self-adjoint operator; time reversed symplectic system; recessive solution; quadratic functional |
Přiložené soubory | |
Popis | In this paper we characterize the Friedrichs extension of operators associated with the 2n-th order Sturm-Liouville dynamic equations on time scales with using the time reversed symplectic systems and its recessive system of solutions. A nontrivial example is also provided. |
Související projekty: |