Toward optimal-resolution NMR of intrinsically disordered proteins

Investor logo
Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Education. It includes Central European Institute of Technology. Official publication website can be found on muni.cz.
Authors

NOVÁČEK Jiří ŽÍDEK Lukáš SKLENÁŘ Vladimír

Year of publication 2014
Type Article in Periodical
Magazine / Source Journal of Magnetic Resonance
MU Faculty or unit

Central European Institute of Technology

Citation
Web http://dx.doi.org/10.1016/j.jmr.2013.12.008
Doi http://dx.doi.org/10.1016/j.jmr.2013.12.008
Field Biochemistry
Keywords IDPs; IDPRs; Multi-dimensional NMR; Non-uniform sampling; NUS; PRE; RDC; RNAP delta-subunit
Description Proteins, which, in their native conditions, sample a multitude of distinct conformational states characterized by high spatiotemporal heterogeneity, most often termed as intrinsically disordered proteins (IDPs), have become a target of broad interest over the past 15 years. With the growing evidence of their important roles in fundamental cellular processes, there is an urgent need to characterize the conformational behavior of IDPs at the highest possible level. The unique feature of NMR spectroscopy in the context of IDPs is its ability to supply details of their structural and temporal alterations at atomic-level resolution. Here, we briefly review recently proposed NMR-based strategies to characterize transient states populated by IDPs and summarize the latest achievements and future prospects in methodological development. Because low chemical shift dispersion represents the major obstacle encountered when studying IDPs by nuclear magnetic resonance, particular attention is paid to techniques allowing one to approach the physical limits of attainable resolution.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.