FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection
Authors | |
---|---|
Year of publication | 2016 |
Type | Article in Periodical |
Magazine / Source | PLoS Pathog |
MU Faculty or unit | |
Citation | |
Doi | http://dx.doi.org/10.1371/journal.ppat.1005555 |
Field | Biochemistry |
Keywords | FUCOSE-BINDING LECTIN; PSEUDOMONAS-AERUGINOSA; ALEURIA-AURANTIA; RALSTONIA-SOLANACEARUM; ALVEOLAR MACROPHAGES; DECTIN-1; RESPONSES; CONIDIA; SPECIFICITY; INVOLVEMENT |
Description | Inhaled Aspergillus fumigatus conidia are effectively eliminated from the lung by the coordinated actions of mucociliary clearance and macrophage killing, but the mechanisms of attachment of Aspergillus fumigatus (A. fumigatus) conidia to the airway mucus gel are unknown. In addition, the mechanisms of phagocytosis of conidia by macrophages are incompletely understood, because inhibition of Dectin-1, mannose receptor, and TLR-2/4 does not completely prevent phagocytosis. A fucose-binding lectin (FleA) expressed on the surface of Aspergillus conidia has recently been described, but its function is unknown. In order to reveal FleA’s function, we carried out combined in vitro and in vivo studies using several novel reagents, including recombinant FleA, FleA deficient (deltafleA) conidia and a potent fucopyranoside inhibitor of FleA. In vitro studies found that FleA mediates binding of A. fumigatus conidia to airway mucins and phagocytosis of conidia by lung macrophages. In in vivo studies we found that mice infected with deltafleA conidia develop invasive aspergillosis whereas those exposed to WT conidia do not. Based on our findings, we propose a novel host defense mechanism against A. fumigatus in which FleA expression on conidia is recognized by lung mucins and macrophages to promote mucociliary clearance and macrophage killing and protect from invasive pulmonary aspergillosis. |
Related projects: |