Insect immunity after invasion of entomopathogenic nematodes

Investor logo

Warning

This publication doesn't include Faculty of Education. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

HYRŠL Pavel DOBEŠ Pavel AREFIN Badrul KUČEROVÁ Lucie MARKUS Robert ZHI Wang ŽUROVEC Michal THEOPOLD Ulrich

Year of publication 2016
Type Conference abstract
MU Faculty or unit

Faculty of Science

Citation
Description Entomopathogenic nematodes and their associated bacteria comprise together a highly pathogenic complex which is able to invade and kill insect host within two days. Both bacteria and nematodes produce a variety of factors interacting with the insect immune system and help to overcome host defences. The tripartite model (Drosophila, nematodes, bacteria) was established and used to show an immune function for candidate genes using different Drosophila mutants or RNAi lines with defects in clotting or other branches of the immune system. Microarray analysis was used to compare gene expression of Drosophila larvae infected by the entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescens with non-infected larvae. The role of candidate genes, selected based on genomic comparison, in response towards nematobacterial complex was further evaluated by in vivo infection assays. We demonstrated an immune function during nematode infection for known clotting enzymes and substrates, recognition molecules and eicosanoids. In conclusion, we show that the Heterorhabditis/Photorhabdus infection model is suitable to identify regulators of innate immunity in insects. Our research is supported by research grants from the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), by grant from Ministry of Agriculture of Czech Republic (NAZV-KUS QJ1210047) and The Technology Agency of the Czech Republic (TA04020318).
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.