Policy learning in continuous-time Markov decision processes using Gaussian Processes

Investor logo

Warning

This publication doesn't include Faculty of Education. It includes Faculty of Informatics. Official publication website can be found on muni.cz.
Authors

BRÁZDIL Tomáš BARTOCCI Ezio MILIOS Dimitrios SANGUINETTI Guido BORTOLUSSI Luca

Year of publication 2017
Type Article in Periodical
Magazine / Source Performance Evaluation
MU Faculty or unit

Faculty of Informatics

Citation
Web http://dx.doi.org/10.1016/j.peva.2017.08.007
Doi http://dx.doi.org/10.1016/j.peva.2017.08.007
Keywords continuous-time Markov decision processes; reachability; gradient descent
Description Continuous-time Markov decision processes provide a very powerful mathematical framework to solve policy-making problems in a wide range of applications, ranging from the control of populations to cyber–physical systems. The key problem to solve for these models is to efficiently compute an optimal policy to control the system in order to maximise the probability of satisfying a set of temporal logic specifications. Here we introduce a novel method based on statistical model checking and an unbiased estimation of a functional gradient in the space of possible policies. Our approach presents several advantages over the classical methods based on discretisation techniques, as it does not assume the a-priori knowledge of a model that can be replaced by a black-box, and does not suffer from state-space explosion. The use of a stochastic moment-based gradient ascent algorithm to guide our search considerably improves the efficiency of learning policies and accelerates the convergence using the momentum term. We demonstrate the strong performance of our approach on two examples of non-linear population models: an epidemiology model with no permanent recovery and a queuing system with non-deterministic choice.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.