Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: Degradation and bioaccumulation in earthworms

Investor logo
Investor logo

Warning

This publication doesn't include Faculty of Education. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

BOŠKOVIĆ Nikola BÍLKOVÁ Zuzana ŠUDOMA Marek BIELSKÁ Lucie ŠKULCOVÁ Lucia RIBITSCH Doris SOJA Gerhard HOFMAN Jakub

Year of publication 2021
Type Article in Periodical
Magazine / Source Chemosphere
MU Faculty or unit

Faculty of Science

Citation
Web https://www.sciencedirect.com/science/article/pii/S0045653521001697?via%3Dihub
Doi http://dx.doi.org/10.1016/j.chemosphere.2021.129700
Keywords Conazole fungicides; Bioaccumulation; Degradation; Biochar; Soil; Eisenia andrei
Description Biochar usage in agriculture becomes increasingly important for the improvement of soil properties. However, from the perspective of pesticides, biochar can influence exposure to pesticides of both target and non-target organisms and also pesticides' fate in soil. Our study investigated degradation and bioaccumulation (in the Eisenia andrei earthworm) of two conazole fungicides, epoxiconazole and tebuconazole, added to high- and low-sorbing soils (by means of fungicides' sorption measured beforehand) amended with low-, moderate- and high-sorbing biochars at 0.2% and 2% doses. We aimed to investigate the effects of contrasting soil and biochar properties, different doses of biochar in soil-biochar mixtures, and different compounds on the degradation and bioaccumulation. We also wanted to explore if the beforehand determined sorption of fungicides on individual soils and biochars is manifested somehow in their degradation and/or bioaccumulation in soil-biochar mixtures. The biochars' presence in the soils promoted the degradation of fungicides with a clear effect of dose and soil, but less clear effect of biochar or compound. The bioaccumulation factors were higher in low-sorbing soil variants and also decreased with increasing biochar dose. For low-sorbing soil variants, the bioaccumulation was also influenced by the type of biochar corresponding to its sorbing potential and the possible effect on the bioavailability of the fungicides. Our results show that mixing of biochars with soils changes the fate and bioaccumulation of the conazole fungicides. However, the sorption results from original materials are not straightforwardly manifested in the more complex soil-biota system.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.