Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing

Investor logo

Warning

This publication doesn't include Faculty of Education. It includes Faculty of Science. Official publication website can be found on muni.cz.
Authors

LACINA Karel VĚŽNÍK Jakub SOPOUŠEK Jakub FARKA Zdeněk LACINOVÁ Veronika SKLÁDAL Petr

Year of publication 2023
Type Article in Periodical
Magazine / Source Bioelectrochemistry
MU Faculty or unit

Faculty of Science

Citation
Web https://www.sciencedirect.com/science/article/pii/S1567539422002596?via%3Dihub
Doi http://dx.doi.org/10.1016/j.bioelechem.2022.108308
Keywords Electrochemical biosensor Electrochemical impedance spectroscopy Immunosensor Diffusion layer Nanopore Polystyrene nanoparticle
Description Nanoporous surfaces are promising for label-free electrochemical biosensing. We formed nanopores directly on the electrode surface by means of assembling a dense layer of nonconductive nanoparticles. In our model affinity biosensor, covalent attachment of albumin protein on top of 40 nm polystyrene nanoparticles represented a capture of an analyte, resulting in blockage of the nanopores. Different bulk concentrations of the ferro/ferricyanide redox pair were probed by Faradaic electrochemical impedance spectroscopy and fast chronoamperometry. The character of the redox probe permeation towards the electrode surface differed in dependence on its concentration. These data were compared with the theoretical behavior of the free diffusion according to the Cottrell equation. Both the bulk concentration of the redox probe and the timescale of the experiment affected the performance of the electrochemical detection, demonstrating the importance of controlling these parameters in immunosensing applications.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.