High spatial and spectral resolution dataset of hyperspectral look-up tables for 3.5 million traits and structural combinations of Central European temperate broadleaf forests

Authors

HANOUSEK Tomáš SLANINÁKOVÁ Terézia REBOK Tomáš JANOUTOVÁ Růžena

Year of publication 2024
Type Article in Periodical
Magazine / Source DATA IN BRIEF
Citation
Web https://www.sciencedirect.com/science/article/pii/S2352340924010679
Doi http://dx.doi.org/10.1016/j.dib.2024.111105
Keywords LUT;Radiative transfer model;DART;Machine learning model;Synthetic spectral data;Leaf traits;Hyperspectral data
Description Accurate retrieval of forest functional traits from remote sensing data is critical for monitoring forest health and productivity. To achieve sufficient accuracy using inverse methods it is essential to have representative database of simulated or measured spectral properties together with corresponding forest traits. However, existing datasets are often limited in scope, covering specific sites and times with simplified structures. This limitation hinders the development of generalizable machine learning models for trait prediction. To address this issue, we present a comprehensive high-resolution dataset of hyperspectral Look-Up Tables (LUT) designed for Central European temperate broadleaf forests. The dataset includes 3.5 million unique combinations of leaf biochemical and canopy structural characteristics of forest scenes together with a variety of sun geometry. The spectral data cover wavelengths from 450 nm to 2300 nm, with a resolution of 2 nm. The dataset is organised into two files: one capturing the average reflectance of all scene pixels and another focusing solely on sunlit leaf pixels. LUT were generated using the Discrete Anisotropic Radiative Transfer model version 5.10.0. Virtual forest scenes were based on 3D tree representations derived from Terrestrial Laser Scanning of European beech trees, adjusted to various leaf area index values and structural configurations to simulate natural forest variability. The reflectance data were processed using MATLAB and Python scripts, resulting in hyperspectral cubes that were processed to generate the LUT. The dataset can be used to train machine learning models, such as Random Forest and Support Vector Machines, for predicting forest functional traits and assisting in the calibration of remote sensing algorithms. The biggest advantage of the dataset is high spectral and spatial resolution, together with the high number of different trait combinations, which allows for adaptability to different times, locations, and hyper- and multispectral sensors, and can support up-coming hyperspectral satellite missions. ESA Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) and NASA Surface Biology and Geology (SBG) future satellite missions can utilise this dataset to develop their product processors for monitoring forest traits.
Related projects:

You are running an old browser version. We recommend updating your browser to its latest version.